



**PA-003-1016002**      Seat No. \_\_\_\_\_

## **B. Sc. (Sem. VI) (CBCS) Examination**

March / April - 2020

## **Mathematics : Paper - M - 09 (A)**

(Mathematical Analysis - 2 & Abstract Algebra - 2)

Faculty Code : 003  
Subject Code : 1016002

Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70]

### **Instructions :**

(1) All questions are **compulsory**.  
(2) Write answer of each question in your main answer sheet.

1 (A) Answer the following questions in brief : 4

- (1) Define bounded set.
- (2) Define separated sets.
- (3) Define connected set.
- (4) Determine whether the subset  $\{1, 2, 3, 4, 5\}$  of metric space  $R$  is compact or not.

(B) Attempt any **one** out of **two** : 2

- (1) Show that subsets  $A = (3, 4)$  and  $B = (4, 5)$  of metric space  $R$  are separated.
- (2) Show that every finite subset of a metric space is compact.

(C) Attempt any **one** out of **two** : 3

- (1) State and prove Heine-Borel theorem.
- (2) Prove that every singleton subset of any metric space is connected.

(D) Attempt any **one** out of **two** : 5

- (1) Prove that continuous image of compact set is compact.
- (2) State and prove theorem of nested intervals.

**2** (A) Answer the following questions in brief : 4

- (1) Define Laplace Transform
- (2) Find  $L(e^{-t})$ .
- (3) Find  $L^{-1}\left(\frac{1}{s^2-1}\right)$ .
- (4) Show that  $L(1) = \frac{1}{s}$ , where  $s > 0$ .

(B) Attempt any **one** out of **two** : 2

- (1) Find  $L^{-1}\left(\frac{s-2}{(s-2)^2+4}\right)$ .
- (2) Find  $L(2t + 5 \sin 3t)$ .

(C) Attempt any **one** out of **two** : 3

- (1) Find Laplace transform of  $t^2 \sin at$
- (2) If  $L\{f(t)\} = \bar{f}(s)$  then prove that  $L\{e^{at}f(t)\} = \bar{f}(s-a)$ .

(D) Attempt any **one** out of **two** : 5

- (1) Find Laplace inverse of  $\frac{s+2}{(s-2)^3}$ .
- (2) Prove that  $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right) = \frac{1}{2a}t \sin at$ .

**3** (A) Answer the following questions in brief : 4

- (1) Find  $L(t e^t)$ .
- (2) Write convolution theorem.
- (3) Find  $L(t \sin t)$ .
- (4) Find  $L(t^2 e^{-2t})$ .

(B) Attempt any **one** out of **two** : 2

- (1) If  $L\{f(t)\} = \bar{f}(s)$  then prove

$$L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} [\bar{f}(s)].$$

- (2) Find  $L\left(\frac{\sin t}{t}\right)$ .

(C) Attempt any **one** out of **two** :

3

(1) Prove that  $L\left\{\frac{e^{-at} - e^{-bt}}{t}\right\} = \log\left(\frac{s+b}{s+a}\right)$ .

(2) Prove that  $L^{-1}\left(\log\left(1 + \frac{4}{s^2}\right)\right) = \frac{2(1 - \cos 2t)}{t}$ .

(D) Attempt any **one** out of **two** :

5

(1) Prove that  $L^{-1}\left\{\frac{s^2 - a^2}{(s^2 + a^2)^2}\right\} = t \cos at$ .

(2) Using convolution theorem, prove

$$L^{-1}\left\{\frac{s}{(s^2 + 4)^2}\right\} = \frac{t}{4} \sin 2t.$$

4 (A) Answer the following questions in brief :

4

(1) Define Natural Mapping.

(2) Define monomorphism.

(3) If  $\phi : (G, *) \rightarrow (G', \Delta)$ ,  $\phi(x) = e'$ ,  $\forall x \in G$  is a homomorphism. Then find  $K_\phi$ .

(4) Define Kernel of homomorphism.

(B) Attempt any **one** out of **two** :

2

(1) Let  $(G, *) = (Z, +)$  and  $(G', \Delta) = (R, +)$  then

show that  $\phi : (G, *) \rightarrow (G', \Delta)$ ;  $\phi(x) = x$  is Homomorphism.

(2) If  $\phi : (G, *) \rightarrow (G', \Delta)$  is a Homomorphism. Then  $\phi(e) = e'$  where  $e$  and  $e'$  are identity elements of  $G$  and  $G'$  respectively.

(C) Attempt any **one** out of **two** : 3

- (1) If  $\phi : (G, *) \rightarrow (G', \Delta)$  is a Homomorphism and if  $N$  is a normal subgroup of  $G$  then show that  $\phi(N)$  is a normal subgroup of  $G'$ .
- (2) Prove that a Homomorphism  $\phi : (G, *) \rightarrow (G', \Delta)$  is one-one iff  $k_\phi = \{e\}$ .

(D) Attempt any **one** out of **two** : 5

- (1) State and prove first fundamental theorem of homomorphism
- (2) If  $\phi : (G, *) \rightarrow (G', \Delta)$  is a Homomorphism. Then prove that Kernel  $k_\phi$  is a normal Subgroup of  $G$ .

**5** (A) Answer the following questions in briefly : 4

- (1) Define Commutative ring
- (2) If polynomial  $f = (0, 1, 2, 3, 0, 0, \dots)$  then find degree of  $f$ .
- (3) Define Field.
- (4) Define Monic polynomial.

(B) Attempt any **one** out of **two** : 2

- (1) State and prove factor theorem of polynomials
- (2) If  $f(x) = (3, 1, 4, 2, 0, 0, \dots)$  and  $g(x) = (1, 3, 0, 0, 0, 1, \dots) \in R[x]$  then find  $f(x) + g(x)$ .

(C) Attempt any **one** out of **two** : 3

- (1) State and prove Remainder theorem of polynomials
- (2) In  $R[x]$ ,  $f(x) = 4x^4 - 3x^2 + 1$  is divided by  $g(x) = x^3 - 2x + 1$  then find quotient  $q(x)$  and remainder  $r(x)$ .

(D) Attempt any **one** out of **two** : 5

- (1) Let  $f, g \in D[X] - \{0\}$  then prove that  $[fg] = [f] + [g]$ .
- (2) Prove that a field has no proper ideal.